
Lestrade Tutorial

Randall Holmes

March 30, 2024

Contents

1 Introduction 2
1.1 Opening up the LTI . 4

2 Things and their kinds in Lestrade 5
2.1 Objects and their sorts . 6
2.2 Declarations of parameters, constants and functions 8
2.3 Variable management and “moves” 15
2.4 Implication and quantifiers in Lestrade 19
2.5 Functions and their sorts: a technical interlude 30

3 Definitions and proofs: logic 32
3.1 More propositional logic declarations 32
3.2 Proving the exportation theorem 43

4 Translation of an important mathematical text: Zermelo set
theory 50

1

1 Introduction

This document is intended to introduce the Lestrade logical framework and
the Lestrade Type Inspector (the LTI), the software which implements the
framework.

The LaTeX source of this document is also an executable LTI script. This
is an exercise in literate programming, and the way it works will be explained
below.

The Lestrade framework is a dependent type theory, and the LTI could
be construed as software for type checking declarations and definitions in a
typed programming language. What it currently mostly lacks to be seen as
a full programming language is means of execution, which an earlier version
did have, and which we do intend to reinstall.

It is an insight which is becoming more widely known that a type checking
environment is actually a theorem prover. The way this is achieved is by
viewing mathematical propositions and proofs of (or more generally evidence
for) mathematical propositions as being themselves mathematical entities of
special types.

The first theorem prover of this kind was Automath, developed by de
Bruijn and fellow workers in the 1970’s. Lestrade is a descendant of Au-
tomath (this will be clear to anyone familiar with Automath). One of the
primary current theorem proving systems, Coq, is a descendant of Automath.
Coq is primarily intended to implement constructive mathematics, though
it can handle classical mathematics. Automath was generally used to imple-
ment theories with classical logic (though one could do constructive mathe-
matics in Automath).

Homotopy type theory (HoTT) is a system of dependent type theory
which is currently a hot topic: it can be implemented in current theorem
provers of the Automath family, such as Coq. HoTT (and the native type the-
ories of current theorem provers of the Automath family) differ from Lestrade
in being quite baroque with many constructors; Lestrade has a minimal set
of primitives of its own (similarly to Automath); the more complex depen-
dent type theories can be implemented by suitable type declarations in the
Lestrade framework.

We want to implement classical mathematics, and theories with the full
mathematical power of Cantorian set theory (such as the default system of
set theory usually used) but we are guided in our work on Lestrade by a
philosophy of mathematics which is not constructive per se but is Aristote-

2

lean: we are exploring the idea that all infinities can be viewed as potential
(but nonetheless, sense can be made of the full panoply of modern classical
mathematics based on Cantorian set theory).

3

1.1 Opening up the LTI

To start up the LTI, start up Poly/ML in a directory in which there is a
subdirectory called Ltxts. Once Poly/ML is open, type

use "lestradespecificationpoly.sml";

and then type

Interface();

and the LTI will be up. Text commands are typed at the LTI prompt
>>> and the LTI responds.

A LaTeX source file (.tex) can be made (in part) a Lestrade executable by
enclosing Lestrade commands between the lines Begin Lestrade execution

and End Lestrade execution. (the execution block should itself be en-
closed in a verbatim environment). Commands should be preceded by the
prompt >>>. The entire file should end with the line quit. When the file
is run in the LTI using the Readtex command, the replies of the LTI to the
commands in execution blocks will be inserted into the file. The reader will
see this in this very document.

4

2 Things and their kinds in Lestrade

Things that we talk about in Lestrade theories are referred to at the most
general level as entities . There are two kinds of entity, objects and functions .
Any object or function has a sort (the types of the Lestrade framework).
There are specific sorts (correlated with objects of a special sort) which we
call types , as we will see. Types as such are sorts of mathematical objects of
the usual kind as opposed to the sort of propositions and the sorts of their
proofs [and as opposed to the sort of type labels], as we will see.

We begin with objects and their sorts.

5

2.1 Objects and their sorts

There are three singular sorts of object, prop (the sort inhabited by propo-
sitions), obj (the catchall sort inhabited by objects of an “untyped” theory
like ZFC), and type (the sort inhabited by labels for the types of objects in
a typed mathematical theory).

For a reader unfamiliar with distinctions between untyped and typed
mathematical theories, we will present declarations of Lestrade theories im-
plementing mathematical theories of both kinds below.

For each p of type prop, there is a sort that p inhabited by what might
be called proofs of p, but we prefer to call objects of sort that p evidence for
p. If you are given an object of sort that p you are committed to p being
true: there is nothing probabilistic about this evidence.

We prefer to say “evidence for p” rather than “proofs of p”, because for
us adopting the hypothesis that p is true is the same as postulating an object
of type that p, and it is on the face of it stronger to suppose that there is
a proof of p than it is to suppose that p is true. A constructivist might feel
that proofs are the only sort of evidence, but the framework here does not
commit us to such a view. An explicitly constructed object of type that p,
where neither the evidence object nor the proposition contains any variable
parameters, we would call a proof.

For each object τ of sort type there is a sort in τ inhabited by objects
of the sort labelled by τ . The object τ we call a “type label” and the sort in
τ we might refer to as a type.

An example (to make it clear what we are talking about): a type label
Nat might be present in a typed theory as the label for the type of natural
numbers; objects 0, 1, 2, . . . would then presumably be present, each of sort
in Nat. We resist that idea that Nat is the set of natural numbers in this
example: the sort in Nat is a feature we notice in each natural number when
we encounter it: we do not need to know about all natural numbers at once
to know what Nat is [this is suggested by our Aristotelean viewpoint].

It is useful to notice that there is no formal difference at all between
prop/that on the one hand and type/in on the other. There is a well known
analogy between constructions of proofs of propositions on the one hand and
constructions of objects in mathematical types on the other, which we will
explore below. The difference between propositions (associated with the sort
of their proofs) and type labels (associated with the type they represent)
is a difference of intention more than of basic mathematical form. Some

6

approaches might not even make use of this distinction (all work might be
done in type/in with propositions just a special case). Some approaches
might declare general operations on propositions and their proofs which have
no analogues on type labels and their associated types, or vice versa.

These are all the sorts of object in the current implementation. There is
a plan to introduce an additional sort of object representing computational
rules, which we might discuss later: the aim is to support interesting exe-
cution behavior and make the LTI into a typed programming language, in
effect. For the moment, these are not implemented, though an approximation
to them is implemented in an earlier version of the LTI.

7

2.2 Declarations of parameters, constants and func-
tions

Proceeding directly to a description of the other major kind of entity, func-
tions, would involve digesting a complicated abstraction all at once. We
approach this more gently by introducing some declarations and definitions
of objects and functions, and introducing the important topic of parameters
or variables .

We introduce the definition of the logical notion of conjunction (and) and
its basic rules. It is important to notice that conjunction is not a primitive
of Lestrade: Lestrade in fact has no primitive operations on propositions at
all! These are declarations in a specific Lestrade theory (and so universally
useful that this is likely to be in the background library of almost all theories
a user will construct).

begin Lestrade execution

>>> declare p prop

p : prop

{move 1}

>>> declare q prop

q : prop

{move 1}

end Lestrade execution

The only lines that I typed in the block above were the ones beginning
with the prompt >>>. The rest of the text is replies from the LTI.

The commands above declare two variable parameters of type prop.

8

begin Lestrade execution

>>> postulate False prop

False : prop

{move 0}

>>> postulate & p q prop

& : [(p_1 : prop), (q_1 : prop) =>

(--- : prop)]

{move 0}

end Lestrade execution

The first command above declares a proposition constant False (demon-
strating the difference between declaring a constant and declaring a variable
parameter). The annotation move 0 tells us that this is a constant declara-
tion, as opposed to the annotation move 1 below the parameter declarations
in the block above.

The second declaration requires more attention. The symbol & is declared
as a function taking two proposition parameters and returning a proposition.
The output notation below gives rather verbose notation for the sort of this
operation. Please note that we will feel free to use the now more usual
notation ∧ for conjunction; in Lestrade we must accommodate the limits of
the typewriter keyboard.

This does not tell Lestrade that & has the intended meaning “and”: all
it says is that this is a binary propositional connective.

And now we will exhibit further declarations which will give & the in-
tended meaning.

9

begin Lestrade execution

>>> declare pp that p

pp : that p

{move 1}

>>> declare qq that q

qq : that q

{move 1}

>>> postulate Conj pp qq that p & q

Conj : [(.p_1 : prop), (.q_1 : prop), (pp_1

: that .p_1), (qq_1 : that .q_1) =>

(--- : that .p_1 & .q_1)]

{move 0}

end Lestrade execution

Since we are doing something really interesting here. . .several things hap-
pen at once which need discussion.

We first declare variables pp and qq of types that p and that q respec-
tively. pp is a parameter varying over evidence for p, and qq is a parameter
varying over evidence for q.

The declaration we write for Conj says that it takes evidence for p and
evidence for q and returns evidence for p ∧ q (notice that the prover will use
infix notation for a function with two arguments). And this embodies the
logical rule of conjunction introduction (which I call simply conjunction).

The type declaration which the LTI returns reveals that Conj is actually a
function of four arguments: the arguments p and q can safely be left implicit
because they can be deduced from the types of the explicit arguments pp and
qq. The implicit argument facility is a very subtle aspect of the LTI.

10

We complete the declaration of the rules of deduction for conjunction.
The rule(s) of conjunction elimination we are in the habit of calling “simpli-
fication”.

begin Lestrade execution

>>> declare rr that p & q

rr : that p & q

{move 1}

>>> postulate Simp1 rr that p

Simp1 : [(.p_1 : prop), (.q_1 : prop), (rr_1

: that .p_1 & .q_1) => (--- : that

.p_1)]

{move 0}

>>> postulate Simp2 rr that q

Simp2 : [(.p_1 : prop), (.q_1 : prop), (rr_1

: that .p_1 & .q_1) => (--- : that

.q_1)]

{move 0}

end Lestrade execution

From evidence for p ∧ q we can extract evidence for p and evidence for
q. Notice that again the propositions p and q are hidden arguments of the
functions Simp1 and Simp2.

11

We illustrate development of a derived rule of inference.

begin Lestrade execution

>>> clearcurrent

{move 1}

>>> declare p prop

p : prop

{move 1}

>>> declare q prop

q : prop

{move 1}

>>> declare rr that p & q

rr : that p & q

{move 1}

>>> open

{move 2}

>>> define rr1 : Simp2 rr

rr1 : that q

{move 1}

>>> define rr2 : Simp1 rr

12

rr2 : that p

{move 1}

>>> define rr3 : Conj rr1 rr2

rr3 : that q & p

{move 1}

>>> close

{move 1}

>>> define Conjsymm rr : rr3

Conjsymm : [(.p_1 : prop), (.q_1

: prop), (rr_1 : that .p_1 & .q_1) =>

({def} Simp2 (rr_1) Conj Simp1 (rr_1) : that

.q_1 & .p_1)]

Conjsymm : [(.p_1 : prop), (.q_1

: prop), (rr_1 : that .p_1 & .q_1) =>

(--- : that .q_1 & .p_1)]

{move 0}

end Lestrade execution

The clearcurrent command clears declarations of parameters, so p and
q are declared as parameters again.

The effect of the block beginning with open and ending with close will
be discussed further. In this context, the effect is that the parameter rr is
treated as a constant, not a parameter in that block, so the definitions of
rr1, rr2, rr3 are in effect definitions of constants locally and do not require
rr as a parameter. Once the block is closed, rr3 is seen as an expression
depending on the variable parameter rr in a way which makes the definition

13

work. Notice that Conjsymm is actually a function of three variables: p, q,
rr, with the first two deducible from the last and so safely left implicit.

14

2.3 Variable management and “moves”

The reader may have noticed the annotation of each declaration with a move.
Move 0 objects are the objects actually declared in a theory (its con-

stants). In our current theory, the move 0 objects are (thus far) the primitives
&, False, Conj, Simp1, Simp2, and the defined Conjsymm.

Move 1 objects include parameters used for definitions of move 0 func-
tions, and also variable expressions at this level, such as rr1, rr2, rr3

above.
These may be the only moves. But if we use the open command we can

introduce new moves. In any given context, the highest indexed move is the
“next move”, currently inhabited by parameters; the next-to-highest indexed
move is called the “last move”, and entities declared in the last and all lower
indexed moves are treated as constants for the moment. The open command
increments the index of the next move; the close command decrements the
index of the next move and discards everything defined or declared in the
prior next move, which may force expansions of definitions (we will see this
happen). The clearcurrent command discards every declaration in the
next move without decrementing; this is particularly useful when the next
move is move 1, since we cannot decrement at that point. There are some
variations involving saved hierarchies of declarations which may be discussed
later.

The declare command is designed to introduce parameters at the next
move (so at move 1 in the default state of the LTI). The postulate command
and the define command introduce objects or functions at the last move (by
declaration or definition respectively), and take parameters from the next
move. This can be seen in examples above.

All of this may seem mysterious but it is actually easy to exhibit declara-
tions based on things we see in high school and undergraduate mathematics
which exhibit the gradations of variability which the move facility supports.

begin Lestrade execution

>>> postulate Real type

Real : type

15

{move 0}

>>> declare a in Real

a : in Real

{move 1}

>>> declare b in Real

b : in Real

{move 1}

>>> postulate + a b in Real

+ : [(a_1 : in Real), (b_1 : in Real) =>

(--- : in Real)]

{move 0}

>>> postulate * a b in Real

* : [(a_1 : in Real), (b_1 : in Real) =>

(--- : in Real)]

{move 0}

>>> open

{move 2}

>>> declare x in Real

x : in Real

{move 2}

16

>>> declare y in Real

y : in Real

{move 2}

>>> define testfun x y : (a * x) + (b * y)

testfun : [(x_1 : in Real), (y_1

: in Real) => (--- : in Real)]

{move 1}

>>> close

{move 1}

>>> Showdec testfun

testfun : [(x_1 : in Real), (y_1

: in Real) =>

({def} (a * x_1) + b * y_1 : in

Real)]

testfun : [(x_1 : in Real), (y_1

: in Real) => (--- : in Real)]

{move 1}

>>> postulate 1 in Real

1 : in Real

{move 0}

>>> postulate 2 in Real

2 : in Real

17

{move 0}

>>> define test2 a b : testfun 1 2

test2 : [(a_1 : in Real), (b_1 : in

Real) =>

({def} (a_1 * 1) + b_1 * 2 : in

Real)]

test2 : [(a_1 : in Real), (b_1 : in

Real) => (--- : in Real)]

{move 0}

end Lestrade execution

The declarations above introduce the declaration of a general linear func-
tion of two variables ax+by in a quite ordinary sense. The difference between
x and y, parameters of this function, and a, b (“unknown constants”, but just
as much variables) can be expressed exactly in Lestrade terms: a, b are move
1 variables and x, y are move 2 variables.

testfun(x, y) = ax+ by is then a function at move 1 (because it depends
on the move 1 parameters a, b being treated as constants). The function
test2 we define at move 0 at the end is really a bit of fun.

18

2.4 Implication and quantifiers in Lestrade

Before moving to the description of functions in full abstraction, we intro-
duce implication in Lestrade, which requires more sophisticated work with
functions, and quantifiers in Lestrade, which show the need for “dependent
types” (we will explain in context what this means).

begin Lestrade execution

>>> clearcurrent

{move 1}

>>> declare p prop

p : prop

{move 1}

>>> declare q prop

q : prop

{move 1}

>>> postulate -> p q prop

-> : [(p_1 : prop), (q_1 : prop) =>

(--- : prop)]

{move 0}

>>> declare rr that p -> q

rr : that p -> q

{move 1}

>>> declare pp that p

19

pp : that p

{move 1}

>>> postulate Mp rr pp that q

Mp : [(.p_1 : prop), (.q_1 : prop), (rr_1

: that .p_1 -> .q_1), (pp_1 : that

.p_1) => (--- : that .q_1)]

{move 0}

end Lestrade execution

In the block of text above we declare the operation of implication on
propositions, and the familiar rule of modus ponens for use of conditional
statements which are given. The rule for proving a conditional statement,
usually called the deduction theorem, is of a more complicated nature.

begin Lestrade execution

>>> open

{move 2}

>>> declare pp2 that p

pp2 : that p

{move 2}

>>> postulate qq2 pp2 that q

qq2 : [(pp2_1 : that p) => (---

: that q)]

20

{move 1}

>>> close

{move 1}

>>> postulate Deduction qq2 that p -> \

q

Deduction : [(.p_1 : prop), (.q_1

: prop), (qq2_1 : [(pp2_2 : that

.p_1) => (--- : that .q_1)]) =>

(--- : that .p_1 -> .q_1)]

{move 0}

end Lestrade execution

A first thing to notice is that the postulate command introducing qq2,
since it is executed at move 2, declares a function from evidence for p to
evidence for q at move 1, which is then usable as a parameter once the next
move is again move 1.

This subtlety once grasped, what Deduction does is take p, q as implicit
arguments, and a function sending evidence for p to evidence for q as an
explicit argument, and return evidence for p → q.

21

We exhibit a couple of examples.

begin Lestrade execution

>>> open

{move 2}

>>> declare pp1 that p

pp1 : that p

{move 2}

>>> define selfimp pp1 : pp1

selfimp : [(pp1_1 : that p) => (---

: that p)]

{move 1}

>>> close

{move 1}

>>> define Selfimp p : Deduction selfimp

Selfimp : [(p_1 : prop) =>

({def} Deduction ([(pp1_2 : that

p_1) =>

({def} pp1_2 : that p_1)]) : that

p_1 -> p_1)]

Selfimp : [(p_1 : prop) => (--- : that

p_1 -> p_1)]

{move 0}

22

>>> open

{move 2}

>>> declare rr1 that p & q

rr1 : that p & q

{move 2}

>>> define conjsymm rr1 : Conjsymm \

rr1

conjsymm : [(rr1_1 : that p & q) =>

(--- : that q & p)]

{move 1}

>>> close

{move 1}

>>> define Conjsymm2 p q : Deduction conjsymm

Conjsymm2 : [(p_1 : prop), (q_1 : prop) =>

({def} Deduction ([(rr1_2 : that

p_1 & q_1) =>

({def} Conjsymm (rr1_2) : that

q_1 & p_1)]) : that (p_1 & q_1) ->

q_1 & p_1)]

Conjsymm2 : [(p_1 : prop), (q_1 : prop) =>

(--- : that (p_1 & q_1) -> q_1 & p_1)]

{move 0}

end Lestrade execution

It is worth noticing in the second example, which derives from the rule

23

of inference given above the closely related tautology, that conjsymm and
Conjsymm in fact have quite different types, because the second concept has
implicit arguments which the first does not.

24

Now we introduce the universal quantifier and its rules.

begin Lestrade execution

>>> clearcurrent

{move 1}

>>> open

{move 2}

>>> declare x1 obj

x1 : obj

{move 2}

>>> postulate pred x1 prop

pred : [(x1_1 : obj) => (--- : prop)]

{move 1}

>>> close

{move 1}

>>> postulate Forall pred prop

Forall : [(pred_1 : [(x1_2 : obj) =>

(--- : prop)]) => (--- : prop)]

{move 0}

end Lestrade execution

Above we declare a variable pred which represents a predicate (a function

25

from the type obj to the type of propositions), then declare Forall as a
function mapping predicates to propositions.

begin Lestrade execution

>>> declare x obj

x : obj

{move 1}

>>> declare univev that Forall pred

univev : that Forall (pred)

{move 1}

>>> postulate Ui univev x that pred x

Ui : [(.pred_1 : [(x1_2 : obj) =>

(--- : prop)]), (x_1 : obj), (univev_1

: that Forall (.pred_1)) => (---

: that .pred_1 (x_1))]

{move 0}

end Lestrade execution

This is the rule of universal instantiation. Given evidence univev for
(∀u : pred(u)) and a particular x of type obj, the function Ui returns evi-
dence for pred(x). Notice that not only does the output depend on the values
of the inputs, but the sort of the output depends on some of the inputs: this
is what makes this a dependent type theory.

26

The rule of universal generalization is perhaps more subtle.

begin Lestrade execution

>>> open

{move 2}

>>> declare x1 obj

x1 : obj

{move 2}

>>> postulate univev2 x1 that pred \

x1

univev2 : [(x1_1 : obj) => (---

: that pred (x1_1))]

{move 1}

>>> close

{move 1}

>>> postulate Ug pred, univev2 that Forall \

pred

Ug : [(pred_1 : [(x1_2 : obj) =>

(--- : prop)]), (univev2_1

: [(x1_2 : obj) => (--- : that

pred_1 (x1_2))]) => (--- : that

Forall (pred_1))]

{move 0}

27

>>> define Ug2 univev2 : Ug pred, univev2

Ug2 : [(.pred_1 : [(x1_2 : obj) =>

(--- : prop)]), (univev2_1

: [(x1_2 : obj) => (--- : that

.pred_1 (x1_2))]) =>

({def} Ug (.pred_1, univev2_1) : that

Forall (.pred_1))]

Ug2 : [(.pred_1 : [(x1_2 : obj) =>

(--- : prop)]), (univev2_1

: [(x1_2 : obj) => (--- : that

.pred_1 (x1_2))]) => (---

: that Forall (.pred_1))]

{move 0}

end Lestrade execution

The rule of universal generalization tells us that if we have a procedure to
generate from any x of type obj evidence for pred(x), then we have evidence
for (∀x : pred(x)).

The reason that a second version is given is that, as we will see, it is
sometimes but not always possible for the implicit argument mechanism to
deduce from univev2 what the predicate pred is. It can be very convenient
not to have to write out the predicate.

Here we have developed the universal quantifier for untyped mathematical
objects (type obj). We are likely later to present the declarations introducing
quantification over types (in τ).

A difference between Lestrade and other systems of this family is that in
many of them an item of evidence for p → q is a function from evidence for
p to evidence for q, and an item of evidence for (∀x : pred(x)) is a function
taking each appropriate x to evidence for pred(x). We find it useful to sep-
arate objects from functions for reasons which we hope will be seen as we
carry out developments. For those in the know (and for everyone once we
look at mathematical functions) it will be seen that the same thing happens
on the other side of the Curry-Howard isomorphism: evidence for an impli-
cation is an object in the Lestrade sense produced by applying a constructor

28

(Deduction) to a function in the Lestrade sense; mathematical objects in
type theory which a mathematician (including this author) would describe
as a function will actually be Lestrade objects which package Lestrade func-
tions in the same way.

29

2.5 Functions and their sorts: a technical interlude

Here we formally describe functions and their sorts, completing the descrip-
tion of the entities of the Lestrade framework, mod user declarations.

An object sort, as noted above, is either prop, type, obj, or that p where
p is a term of sort prop or in τ where τ is a term of sort type.

A function sort is of the shape (x1 : τ1, . . . , xn : τn ⇒ τ), where each xi is
a variable of type τi bound in the expression and sorts τ and τj for j > i may
contain occurrences of the variable xi (this is what makes this dependent
type theory). The types τi may be either object or function sorts; τ is an
object sort. n might be 1 in which case the shape is actually (x1 : τ1 ⇒ τ)

An object term is either atomic or an application term f(t1, . . . , tn), where
f must be an atomic function term and the ti’s are general object or function
terms. We note as seen above that binary function terms may be used as
infixes; Lestrade output notation will use infix notation by preference.

A function term is either atomic or of the shape (x1 : τ1, . . . , xn : τn ⇒ t :
τ) (which is of sort (x1 : τ1, . . . , xn : τn ⇒ τ)), each xi being of sort τi and t
of sort τ). As above, n might be 1.

A term f(t1, . . . , tn) where f is of type (x1 : τ1, . . . , xm : τm ⇒ τ) is
well-typed iff m = n and (if n = 1) t1 is of type τ1 [in which case the term
is of type τ [t1/x1]] or (if n > 1) g(t2, . . . , tn) is well-typed where g is of type
(x2 : τ2[t1/x1], . . . , xn : τn[t1/x1] ⇒ τ [t1/x1]) [and the type of the original
term is the type of this term]. The notation X[t/v] denotes the result of
substituting the term t for the variable v in the term or sort X.

The notion of substitution has an elaborate recursive definition, the in-
teresting clause of which is that replacement of f with

(x1 : τ1, . . . , xn : τn ⇒ t : τ)

in f(t1, . . . , tn) yields (if n = 1) t[t1/x1] and otherwise the result of replacing
g with (x2 : τ2[t1/x1], . . . , xn : τn[t1/x1] ⇒ t : τ [t1/x1]) in g(t2, . . . , tn): we
do not write function abstraction terms in applied position, but always carry
through with the implied substitution (a feature of Russell and Whitehead’s
Principia.)

The output notation of Lestrade takes roughly the form described above
(the attentive reader has seen samples). A function sort actually takes the
shape (x1 : τ1, . . . , xn : τn ⇒ --- : τ), its computer representation being
similar to that of an abstract function term, but with a dummy object as
the body. The input notation takes advantage of the fact that atomic terms

30

always have types declared earlier in the environment, and does not require
[or even support] user entered types attached to variables or other terms.

It is possible to write function sorts and function abstraction terms in
the form [t1, . . . , tn ⇒ τ] or [t1, . . . , tn ⇒ t] as user input, where the types of
the bound variables are read from the types of variables of the same shape in
the next move [though they do not have the same semantics, being actually
variables in further moves not explicitly introduced, if one looks closely].
Examples will be given. There will also be discussion of the forms that user
input notation may take.

The reader should note that application terms are officially always of
object type. If f(t1, . . . , tn) is well formed, the LTI does permit use of
f(t1, . . . , tm) [m < n] as shorthand for [(xm+1, . . . , xn ⇒ f(t1, . . . , tm, xm+1, . . . , xn)].

This is a fairly complete description of the Lestrade type framework. The
rest is user declaration of objects of useful types.

Thus far we have considered mathematicial technicalities about the notion
of function. We also have to consider metaphysical technicalities.

Our guiding philosophy in Lestrade is Aristotelean: we do not want to
posit actual infinite objects given as completed wholes. So we do not view
functions as complete infinite tables of values but as rules which tell us, for
any input we encounter, how to compute the output. We can extend this to
such things as universally quantified statements: evidence for (∀x : pred(x)
is not construed as involving evidence for each and every pred(a), but a
recipe for evidence for pred(a) for any a that we may encounter. We may
think of objects in the next move as arbitrary objects that we may encounter
in the future. The machinery of Lestrade is designed to convince us that
we really can manage with a notion of “arbitrary object” without having
to suppose that we are given all objects at once. Impredicativity makes its
appearance in the fact that we are able to consider arbitrary functions which
may be introduced in the future, as well – without claiming that we know
all possible functions at once. Of course, hypotheses about all functions that
we may encounter will in general be a lot stronger than hypotheses about all
objects we may encounter: but we can formulate them.

And, curiously enough, classical logic and Cantorian set theory make
perfectly good sense in this framework, as we will see.

31

3 Definitions and proofs: logic

In this section we will build machinery for logic in Lestrade and prove some
theorems, with both the usefulness of such a Lestrade theory in mind and
the implicit illustration of how Lestrade works.

The theory of dependent type theorem proving might be taken to suggest
a preference for constructive logic. We are actually fine with classical logic,
but we are concerned to illustrate that it is compatible with our Aristotelean
philosophical framework.

So, we will give independent constructive definitions for the connectives
of propositional logic, but also provide the principle of double negation, so
that classical equivalences obtain.

3.1 More propositional logic declarations

We introduce disjunction as a primitive.

begin Lestrade execution

>>> declare p prop

p : prop

{move 1}

>>> declare q prop

q : prop

{move 1}

>>> postulate V p q prop

V : [(p_1 : prop), (q_1 : prop) =>

(--- : prop)]

{move 0}

32

>>> declare pp that p

pp : that p

{move 1}

>>> declare qq that q

qq : that q

{move 1}

>>> postulate Addition1 q pp that p V q

Addition1 : [(.p_1 : prop), (q_1

: prop), (pp_1 : that .p_1) =>

(--- : that .p_1 V q_1)]

{move 0}

>>> postulate Addition2 p qq that p V q

Addition2 : [(p_1 : prop), (.q_1

: prop), (qq_1 : that .q_1) =>

(--- : that p_1 V .q_1)]

{move 0}

end Lestrade execution

It is interesting to note that the rules of addition need the other propo-
sition as an argument. It is hardly a surprise, as the other proposition does
not appear as a component of what you might think is the default input, but
it is there.

The rule of disjunction elimination (proof by cases) is more complicated.

33

begin Lestrade execution

>>> declare r prop

r : prop

{move 1}

>>> open

{move 2}

>>> declare pp1 that p

pp1 : that p

{move 2}

>>> postulate case1 pp1 that r

case1 : [(pp1_1 : that p) => (---

: that r)]

{move 1}

>>> declare qq1 that q

qq1 : that q

{move 2}

>>> postulate case2 qq1 that r

case2 : [(qq1_1 : that q) => (---

: that r)]

{move 1}

34

>>> close

{move 1}

>>> postulate Cases case1, case2 that \

p V q

Cases : [(.p_1 : prop), (.q_1 : prop), (.r_1

: prop), (case1_1 : [(pp1_2 : that

.p_1) => (--- : that .r_1)]), (case2_1

: [(qq1_2 : that .q_1) => (---

: that .r_1)]) => (--- : that

.p_1 V .q_1)]

{move 0}

end Lestrade execution

A nice feature here is that we do not need a separate environment for
each case: one environment with two hypothetical arguments works, because
we can keep track in our declarations of which hypthoses are used.

Arguments to a function which are themselves functions should be sep-
arated by commas from what follows to avoid a misreading in which the
function argument is applied to what follows. case1 in the definition of
Cases is an example.

The negation and the biconditional are introduced by definition.

begin Lestrade execution

>>> clearcurrent

{move 1}

>>> declare p prop

p : prop

{move 1}

35

>>> declare q prop

q : prop

{move 1}

>>> define ~ p : p -> False

~ : [(p_1 : prop) =>

({def} p_1 -> False : prop)]

~ : [(p_1 : prop) => (--- : prop)]

{move 0}

>>> define <-> p q : (p -> q) & (q -> \

p)

<-> : [(p_1 : prop), (q_1 : prop) =>

({def} (p_1 -> q_1) & q_1 -> p_1

: prop)]

<-> : [(p_1 : prop), (q_1 : prop) =>

(--- : prop)]

{move 0}

>>> declare maybe that ~ ~ p

maybe : that ~ (~ (p))

{move 1}

>>> postulate Dneg maybe that p

Dneg : [(.p_1 : prop), (maybe_1 : that

~ (~ (.p_1))) => (--- : that

36

.p_1)]

{move 0}

end Lestrade execution

We derive rules for the use of these defined operators. We start with
negation introduction.

begin Lestrade execution

>>> clearcurrent

{move 1}

>>> declare p prop

p : prop

{move 1}

>>> open

{move 2}

>>> declare pp1 that p

pp1 : that p

{move 2}

>>> postulate contra1 pp1 that False

contra1 : [(pp1_1 : that p) => (---

: that False)]

{move 1}

37

>>> close

{move 1}

>>> define Negintro1 contra1 : Deduction \

contra1

Negintro1 : [(.p_1 : prop), (contra1_1

: [(pp1_2 : that .p_1) => (---

: that False)]) =>

({def} Deduction (contra1_1) : that

.p_1 -> False)]

Negintro1 : [(.p_1 : prop), (contra1_1

: [(pp1_2 : that .p_1) => (---

: that False)]) => (--- : that

.p_1 -> False)]

{move 0}

end Lestrade execution

We would like the rule of negation introduction to prove a theorem with
the negation symbol in it! There is a general technique to handle this.

begin Lestrade execution

>>> clearcurrent

{move 1}

>>> declare p prop

p : prop

{move 1}

>>> declare pp that p

38

pp : that p

{move 1}

>>> define Fixform p pp : pp

Fixform : [(p_1 : prop), (pp_1 : that

p_1) =>

({def} pp_1 : that p_1)]

Fixform : [(p_1 : prop), (pp_1 : that

p_1) => (--- : that p_1)]

{move 0}

end Lestrade execution

The subtlety here is that Fixform will check by matching, which includes
expansion of definitions, that its second argument pp is of a type equivalent
to that p, and will return the literal type that p as its type.

begin Lestrade execution

>>> clearcurrent

{move 1}

>>> declare p prop

p : prop

{move 1}

>>> declare pp that p

pp : that p

39

{move 1}

>>> declare contra1 [pp => that False]

contra1 : [(pp_1 : that p) => (---

: that False)]

{move 1}

>>> define Negintro contra1 : Fixform \

(~ p, Negintro1 contra1)

Negintro : [(.p_1 : prop), (contra1_1

: [(pp_2 : that .p_1) => (--- : that

False)]) =>

({def} ~ (.p_1) Fixform Negintro1

(contra1_1) : that ~ (.p_1))]

Negintro : [(.p_1 : prop), (contra1_1

: [(pp_2 : that .p_1) => (--- : that

False)]) => (--- : that ~ (.p_1))]

{move 0}

end Lestrade execution

There is an important feature of Lestrade which is introduced briefly here
to save time. One can declare contra1 without opening a block as shown
above. It is possible to avoid ever entering abstraction terms like [pp =>

that False] by suitable use of blocks, but it is very convenient to do so.
Notice that the LTI uses a declaration in the next move to determine the
type of the bound occurrence of pp, though (as you can see in the previous
proof using a block) if we did this using a block this would not be a variable
in the next move but in a further move which we do not admit opening here.

And as noted we use Fixform to coerce the type of the output of Negintro
to the form desired.

We develop the standard strategy for proving a biconditional.

40

begin Lestrade execution

>>> clearcurrent

{move 1}

>>> declare p prop

p : prop

{move 1}

>>> declare q prop

q : prop

{move 1}

>>> declare pp that p

pp : that p

{move 1}

>>> declare qq that q

qq : that q

{move 1}

>>> declare part1 [pp => that q]

part1 : [(pp_1 : that p) => (--- : that

q)]

{move 1}

>>> declare part2 [qq => that p]

41

part2 : [(qq_1 : that q) => (--- : that

p)]

{move 1}

>>> define Bicondintro part1, part2 : Fixform \

(p <-> q, Conj (Deduction part1, Deduction \

part2))

Bicondintro : [(.p_1 : prop), (.q_1

: prop), (part1_1 : [(pp_2 : that

.p_1) => (--- : that .q_1)]), (part2_1

: [(qq_2 : that .q_1) => (--- : that

.p_1)]) =>

({def} (.p_1 <-> .q_1) Fixform Deduction

(part1_1) Conj Deduction (part2_1) : that

.p_1 <-> .q_1)]

Bicondintro : [(.p_1 : prop), (.q_1

: prop), (part1_1 : [(pp_2 : that

.p_1) => (--- : that .q_1)]), (part2_1

: [(qq_2 : that .q_1) => (--- : that

.p_1)]) => (--- : that .p_1

<-> .q_1)]

{move 0}

end Lestrade execution

This is work in a much more succinct style, taking advantage of the
ability to write variable binding expressions for function types and declare
variables of such types without opening a block, and then (in the proof of
Bicondintro) taking an algebraic approach of just writing down the proof
as a mathematical expression.

It is worth noting in passing that Lestrade’s default view of display of most
functions of two explicit arguments is to use them as infixes; for example,
Conj is used as an infix in Lestrade output above.

42

3.2 Proving the exportation theorem

In this section I present a proof in something like my favored natural deduc-
tion style for paper proofs of the theorem P → (Q → R) ↔ (P ∧ Q) → R.
This should give an idea of a strategy for proof development in Lestrade.

begin Lestrade execution

>>> clearcurrent

{move 1}

>>> declare p prop

p : prop

{move 1}

>>> declare q prop

q : prop

{move 1}

>>> declare r prop

r : prop

{move 1}

>>> open

{move 2}

>>> declare aa that p -> (q -> r)

aa : that p -> q -> r

{move 2}

43

>>> declare bb that (p & q) -> r

bb : that (p & q) -> r

{move 2}

>>> comment we start by proving p & q -> \

r using aa

{move 2}

>>> open

{move 3}

>>> declare cc that p & q

cc : that p & q

{move 3}

>>> open

{move 4}

>>> define dd : Simp1 cc

dd : that p

{move 3}

>>> define ee : Simp2 cc

ee : that q

{move 3}

44

>>> define ff : Mp aa dd

ff : that q -> r

{move 3}

>>> define gg : Mp ff ee

gg : that r

{move 3}

>>> close

{move 3}

>>> define hh cc : gg

hh : [(cc_1 : that p & q) =>

(--- : that r)]

{move 2}

>>> close

{move 2}

>>> define ii aa : Deduction hh

ii : [(aa_1 : that p -> q -> r) =>

(--- : that (p & q) -> r)]

{move 1}

>>> declare jj that (p & q) -> r

jj : that (p & q) -> r

45

{move 2}

>>> open

{move 3}

>>> declare kk that p

kk : that p

{move 3}

>>> open

{move 4}

>>> declare ll that q

ll : that q

{move 4}

>>> open

{move 5}

>>> define mm : Conj kk ll

mm : that p & q

{move 4}

>>> define nn : Mp jj mm

nn : that r

{move 4}

46

>>> close

{move 4}

>>> define oo ll : nn

oo : [(ll_1 : that q) => (---

: that r)]

{move 3}

>>> define rr : Deduction oo

rr : that q -> r

{move 3}

>>> close

{move 3}

>>> define ss kk : rr

ss : [(kk_1 : that p) => (---

: that q -> r)]

{move 2}

>>> define tt : Deduction ss

tt : that p -> q -> r

{move 2}

>>> close

{move 2}

47

>>> define uu jj : tt

uu : [(jj_1 : that (p & q) -> r) =>

(--- : that p -> q -> r)]

{move 1}

>>> close

{move 1}

>>> define Export p q r : Bicondintro \

ii, uu

Export : [(p_1 : prop), (q_1 : prop), (r_1

: prop) =>

({def} Bicondintro ([(aa_2 : that

p_1 -> q_1 -> r_1) =>

({def} Deduction ([(cc_3 : that

p_1 & q_1) =>

({def} (aa_2 Mp Simp1 (cc_3)) Mp

Simp2 (cc_3) : that r_1)]) : that

(p_1 & q_1) -> r_1)], [(jj_2

: that (p_1 & q_1) -> r_1) =>

({def} Deduction ([(kk_3 : that

p_1) =>

({def} Deduction ([(ll_4

: that q_1) =>

({def} jj_2 Mp kk_3 Conj

ll_4 : that r_1)]) : that

q_1 -> r_1)]) : that p_1 ->

q_1 -> r_1)]) : that (p_1 ->

q_1 -> r_1) <-> (p_1 & q_1) -> r_1)]

Export : [(p_1 : prop), (q_1 : prop), (r_1

: prop) => (--- : that (p_1 -> q_1

-> r_1) <-> (p_1 & q_1) -> r_1)]

48

{move 0}

end Lestrade execution

This proof has the exact structure of a natural deduction proof with
nested proofs of implications. At certain points we went one move deeper
than strictly necessary so that definitions which amount to lines in the proof
would be locally constant expressions rather than functions with hypotheses
as explicit parameters. The shallower style is perfectly manageable. Another
thing to notice is that definitions made in moves below move 0 are expanded
out (any definition made in a move is expanded out everywhere when that
move is closed) so reading the term defining Export will actually reveal the
complete proof in an unaccustomed, more algebraic style. This expansion of
the length of a proof term does not occur when lemmas are proved at move
0.

In large proofs, displayed proof terms can get quite large. Your devoted
author actually read the term defining Export, and it does say the right thing
(reading it requires awareness that Mp and Conj are unexpectedly being used
as infixes, and that all infix operators have the same precedence and grouping
is to the right).

It is also worth noticing here that the feedback from Lestrade includes
both the abstraction term representing Export as a function (with the large
embedded term embodying its definition) and the shorter term which is an
abstraction term representing the sort of Export. The latter term is easier
to read to see what has been proved rather than how to prove it.

This proof is large enough to exhibit Lestrade’s automatic indentation of
text to indicate both depth in open/close blocks and depth in abstraction
terms (these two depths being intellectually very closely related).

It should be also noted that the settings of Lestrade under which this is
run do not display bodies of definitions except in move 0 declarations; this is
a setting designed to minimize clutter but turning if off might be interesting
for our present purposes.

49

4 Translation of an important mathematical

text: Zermelo set theory

In this section I use Lestrade to analyze an index text of the foundations of
mathematics, Zermelo’s original paper on the axiomatics of set theory, and
at the same time exhibit what Lestrade can do and how a Lestrade book can
relate to an underlying test.

Zermelo’s paper is written in numbered paragraphs. I paraphrase essen-
tials of each paragraph and follow with any relevant Lestrade declarations.

1. The text says that set theory is concerned with a domain B of individ-
uals which we will call simply objects, some of which are sets. If two
objects a, b are the same we write a = b, and otherwise we write a ̸= b.
We say that an object exists if it belongs to B; we say of a class R of
objects that there exist objects of this class iff R contains at least one
individual of this class.

An important observation here is that the class B and the classes R
cannot be interpreted as sets in B, and the notion of being contained
in B or a class R mentioned here cannot be the relation ∈ introduced
in the next paragraph.

There is no need to declare B: it can be construed as the Lestrade sort
obj. A class in the sense mentioned here can be viewed as a Lestrade
function from obj to prop.

begin Lestrade execution

>>> clearcurrent

{move 1}

>>> declare a obj

a : obj

{move 1}

>>> declare b obj

50

b : obj

{move 1}

>>> declare c obj

c : obj

{move 1}

>>>postulate isaset a prop

>>> postulate = a b prop

= : [(a_1 : obj), (b_1 : obj) =>

(--- : prop)]

{move 0}

>>> postulate Refleq a that a = a

Refleq : [(a_1 : obj) => (--- : that

a_1 = a_1)]

{move 0}

>>> declare eqev that a = b

eqev : that a = b

{move 1}

>>> declare R [c => prop]

R : [(c_1 : obj) => (--- : prop)]

{move 1}

51

>>> declare rev that R a

rev : that R (a)

{move 1}

>>> postulate Subs eqev R, rev that R b

Subs : [(.a_1 : obj), (.b_1 : obj), (eqev_1

: that .a_1 = .b_1), (R_1 : [(c_2

: obj) => (--- : prop)]), (rev_1

: that R_1 (.a_1)) => (--- : that

R_1 (.b_1))]

{move 0}

>>> define Subs2 eqev rev : Subs eqev, R, rev

Subs2 : [(.a_1 : obj), (.b_1 : obj), (eqev_1

: that .a_1 = .b_1), (.R_1 : [(c_2

: obj) => (--- : prop)]), (rev_1

: that .R_1 (.a_1)) =>

({def} Subs (eqev_1, .R_1, rev_1) : that

.R_1 (.b_1))]

Subs2 : [(.a_1 : obj), (.b_1 : obj), (eqev_1

: that .a_1 = .b_1), (.R_1 : [(c_2

: obj) => (--- : prop)]), (rev_1

: that .R_1 (.a_1)) => (--- : that

.R_1 (.b_1))]

{move 0}

>>> postulate Exists R prop

Exists : [(R_1 : [(c_2 : obj) =>

(--- : prop)]) => (--- : prop)]

52

{move 0}

>>> postulate Ei R, a rev that Exists \

R

Ei : [(a_1 : obj), (R_1 : [(c_2

: obj) => (--- : prop)]), (rev_1

: that R_1 (a_1)) => (--- : that

Exists (R_1))]

{move 0}

>>> declare p prop

p : prop

{move 1}

>>> declare existsev that Exists R

existsev : that Exists (R)

{move 1}

>>> declare wev [a rev => that p]

wev : [(a_1 : obj), (rev_1 : that

R (a_1)) => (--- : that p)]

{move 1}

>>> postulate Witnessintro existsev, wev \

that p

Witnessintro : [(.R_1 : [(c_2 : obj) =>

(--- : prop)]), (.p_1 : prop), (existsev_1

: that Exists (.R_1)), (wev_1

53

: [(a_2 : obj), (rev_2 : that

.R_1 (a_2)) => (--- : that .p_1)]) =>

(--- : that .p_1)]

{move 0}

end Lestrade execution

Here I declare the basic properties of equality (reflexivity and substi-
tution), expressing the stated meaning of a = b.

I need to define or declare inequality. I am not certain as I write
whether I will exploit the logic above or extract logic declarations local
to this development from what Zermelo does. How I declare inequality
depends on the decision about this.

I introduce the basic declarations for existence of something in a class
(which is actually the existential quantifier).

54

